ditional stabilization relative to 4. In fact, constraining the hydrogens to lie perpendicular to the $\mathrm{Si}-\mathrm{Si}$ bond causes the $\mathrm{Si}-\mathrm{Si}$ bond distance to increase to $2.346 \AA$, presumably due to repulsion between the hydrogen and silicon valence s orbitals.

Folding along the $\mathrm{Si}-\mathrm{Si}$ bond, which results in structure 1, reduces this repulsion, leading to a $\mathrm{Si}-\mathrm{Si}$ bond distance of 2.181 \AA. In this conformation the π-like orbitals (π_{x} and π_{y} if the $\mathrm{Si}-\mathrm{Si}$ bond is oriented along the z axis) simultaneously serve in $\mathrm{Si}-\mathrm{Si}$ and $\mathrm{Si}-\mathrm{H}$ bonding.

The stepwise distortion from structure 6 to $\mathbf{1}$ is accompanied by an interesting change in the energies of the π orbitals. In structure 6 the highest occupied orbitals are π_{x} and π_{y}. This ordering is preserved in structure 4 although there is some participation of one of the π orbitals in bonding with the hydrogens. Further distortion to the planar bridged conformation results in significant stabilization of the π orbital that is in the plane of molecule (i.e., involved in bonding with the hydrogens). Distortion from $\mathrm{D}_{2 h}$ to $C_{2 v}$ is accompanied by further stabilization of the remaining π orbital. When viewed in this manner, the anomalous bonding is bridged $\mathrm{Si}_{2} \mathrm{H}_{2}$ results from a drive toward better participation of the silicon valence p orbitals in π-like bonding.

IV. Conclusions

Clearly the $\mathrm{Si}_{2} \mathrm{H}_{2}$ hypersurface exhibits unusual characteristics. The absence of a stable linear form of disylyne is a striking feature and indicates that silicon is unwilling to participate in triple bonds.

The span of relative energies for the stable $\mathrm{Si}_{2} \mathrm{H}_{2}$ conformations is much smaller than that of the $\mathrm{C}_{2} \mathrm{H}_{2}$ species ($32.1 \mathrm{kcal} \mathrm{mol}^{-1}$ vs. $97.3 \mathrm{kcal} \mathrm{mol}^{-1}$).

These calculations at the MP4/6-31++G**//HF/6-31G** level of theory suggest that the ground state of $\mathrm{Si}_{2} \mathrm{H}_{2}$ is the bridged form (1). Both the $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{Si}_{2} \mathrm{H}_{2}$ molecular systems were found to possess stable "vinylidene" $(\mathbf{2}, \mathbf{8})$ and bridged $(\mathbf{1}, 9)$ conformations. With respect to the $\mathrm{Si}_{2} \mathrm{H}_{2}$ species, determination of the geometry using the electron correlated MP2/6-31G** approach does not modify these conclusions; linear $D_{\infty h}$ disilyne corresponds to a transition structure while bridged disilyne was found to be a minimum on the $\mathrm{Si}_{2} \mathrm{H}_{2}$ potential surface. The bridged form of $\mathrm{C}_{2} \mathrm{H}_{2}$ was found to exist although it is significantly less stable relative to acetylene than is vinylidene.

Several stable conformations with triplet electronic states exist on both the $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{Si}_{2} \mathrm{H}_{2}$ hypersurfaces. In the case of the $\mathrm{C}_{2} \mathrm{H}_{2}$ species there is a clear preference for planar structures while all the $\mathrm{Si}_{2} \mathrm{H}_{2}$ triplets were found to be nonplanar.

On the basis of comparisons with the calculations performed by Snyder et al. ${ }^{15}$ it is clear that polarization functions are required in describing compounds such as these. The energy orderings predicted for the $\mathrm{Si}_{2} \mathrm{H}_{2}$ singlets are unaltered by inclusion of electron-correlation effects provided that the bais set contains polarization functions. This indicates that an adquate basis set is essential in obtaining reliable relative energies.

Registry No. 2, 87970-40-9; 6, 36835-58-2; 7, 74-86-2; 8, 2143-69-3.

Theoretical Study of Methylsilanone and Five of Its Isomers

Mark S. Gordon* and Clayton George
Contribution from the Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105. Received April 25, 1983

Abstract

By use of 3-21G SCF geometries and relative energies from MP3/6-31G* wave functions, methylsilanone has been found to be the most stable of the six isomers investigated. The relative stabilities of methylsilanone and silylformaldehyde are rationalized by the metathesis reaction $\mathrm{H}_{2} \mathrm{SiO}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{H}_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{CSiH}_{4}$. This reaction is used to suggest that the $\mathrm{C}=\mathrm{O}$ bond is about $10 \mathrm{kcal} / \mathrm{mol}$ stronger than $\mathrm{Si}=\mathrm{O}$.

Introduction

There has recently been considerable experimental ${ }^{1-7}$ and theoretical ${ }^{8}$ interest in silene to silylene rearrangements. Recently, Barton and co-workers ${ }^{9}$ investigated the analogous silanone rearrangement

in which a $\mathrm{Si}=\mathrm{O}$ double bond rearranges to the corresponding

[^0]silylene. Based on their experimental evidence, the authors concluded that reaction 1 does not readily occur. In addition, it has been postulated ${ }^{1}$ that a silene and a ketone may undergo a metathesis reaction
\[

$$
\begin{equation*}
\mathrm{R}_{2} \mathrm{Si}=\mathrm{CR}_{2}+\mathrm{R}_{2} \mathrm{C}=\mathrm{O} \rightarrow \mathrm{R}_{2} \mathrm{Si}=\mathrm{O}+\mathrm{R}_{2} \mathrm{C}=\mathrm{CR}_{2} \tag{2}
\end{equation*}
$$

\]

to form a silanone and the corresponding alkene.
Reactions 1 and 2 suggest that it would be interesting to investigate the relative energies of the two isomers in (1) as well as the isomeric substituted formaldehyde and hydroxy-substituted silenes. Moreover, a reliable calculation of the energy difference in (2) will provide an estimate of the energy difference beteen the $\mathrm{Si}=\mathrm{O}$ and $\mathrm{Si}=\mathrm{C}$ bonds. To minimize the computational effort, the present work presents calculations on $\mathrm{CH}_{3} \mathrm{SiH}=\mathrm{O}$ and five of its isomers.

Computational Methodology

Except for tests with larger basis sets for $\mathrm{H}_{2} \mathrm{SiO}$, all geometries were calculated by use of the $3-21 \mathrm{G}$ basis set ${ }^{10}$ and the Schlegel
(10) J. S. Binkley, J. A. Pople, and W. J. Hehre, J. Am. Chem. Soc. 102, 939 (1980); M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre, ibid., 104, 2797 (1982).

Table I. Properties of $\mathrm{H}_{2} \mathrm{SiO}^{a}$

	$R_{\text {SiO }}$	$R_{\text {SiFI }}$	$\angle \mathrm{HSiO}$	total energy, au	dipole moment, D
3-21G	1.559	1.475	123.0	-362.95589	3.89
6-31G*	1.502	1.475	124.4	-364.91214	4.18
JKS SCF ${ }^{\text {b }}$	1.485	1.472	125.0	-364.7344	4.43
CEPA ${ }^{\text {b }}$	1.507	1.471	125.0	-365.0743	
MP2/6-31G*//3-21G ${ }^{\text {c }}$				-365.18218	
MP3/6-31G*//3-21G ${ }^{\text {c }}$				-365.18005	
MP2/6-31G*//6-31G*d				-365.18001	
MP3/6-31G*//6-31G*d				-365.18027	

Table II. Total Energies (H artree) of $\mathrm{H}_{4} \mathrm{CSiO}$ Isomers

molecule	$3-21 \mathrm{G}$	$6-31 \mathrm{G}^{*}$	MP2/3-21G	MP3/3-21G
$\mathrm{CH}_{3} \mathrm{SiH}=\mathrm{O}$	-401.80632	-403.96311	-402.09461	-402.09041
$\mathrm{CH}_{3}-\mathrm{SiOH}$	-401.84374	-403.96980	-402.09739	-402.10933
$\mathrm{CH}_{2}=\mathrm{SiHOH}$	-401.79663	-403.93825	-402.06188	-402.07171
$\mathrm{SiH}_{3} \mathrm{CH}=\mathrm{O}$	-401.76525	-403.93682	-402.03501	-402.04530
$\mathrm{SiH}_{2}-\mathrm{CH}_{2}-\mathrm{O}$	-401.76764	-403.92600	-402.03911	-402.04868
$\mathrm{SiH}_{2}=\mathrm{CHOH}$	-401.72494	-403.87420	-401.99763	-402.01157

Table III. Relative Energies ($\mathrm{kcal} / \mathrm{mol}$) of $\mathrm{H}_{4} \mathrm{CSiO}$ Isomers

molecule	$3-21 \mathrm{G}$	$6-31 \mathrm{G}^{*}$	$\mathrm{MP} 2 / 3-21 \mathrm{G}$	$\mathrm{MP} 3 / 3-21 \mathrm{G}$	$\mathrm{MP} 2 / 6-31 \mathrm{G}^{* a}$	$\mathrm{MP} 3 / 6-31 \mathrm{G} * a$
$\mathrm{CH}_{3}-\mathrm{SiH}=\mathrm{O}$	0.0	0.0	0.0	0.0	0.0	0.0
$\mathrm{CH}_{3}-\mathrm{SiOH}$	-23.5	-4.2	-1.7	-11.9	17.6	7.4
$\mathrm{CH}_{2}=\mathrm{SiHOH}$	6.1	15.6	20.5	11.7	30.0	21.2
$\mathrm{SiH}_{2}-\mathrm{CH}_{2}-\mathrm{O}$	24.2	23.3	36.0	26.2	35.1	25.3
$\mathrm{SiH}_{3}-\mathrm{CH}=\mathrm{O}$	25.8	16.5	37.4	28.3	28.1	19.0
$\mathrm{SiH}_{2}=\mathrm{CHOH}$	51.1	57.9	58.2	49.5	65.0	56.3

${ }^{a}$ Assuming additivity of polarization and correlation effects. See text.
method for geometry optimization ${ }^{11}$ as implemented in GAUSSIAN80. ${ }^{12}$ Single point calculations were performed using the larger $6-31 \mathrm{G}^{*}$ basis set^{13} and second- and third-order many-body perturbation corrections (MP2 and MP3) as formulated by Moller and Plesset ${ }^{14}$ and developed Pople and co-workers. ${ }^{15}$ For most molecules the MP/6-31G* energies were estimated by assuming that the correlation and polarization effects are additive. This has been demonstrated by a number of authors ${ }^{16}$ and generally is an excellent approximation unless the system being studied exhibits strong configurational mixing.

Results and Discussion

A. Comparison with Previous Calculations: $\mathbf{H}_{2} \mathbf{S i O}$. Jaquet, Kutzelnigg, and Staemmler ${ }^{17}$ have pointed out that diffuse basis functions may be important to provide an adequate description of some properties of the SiO bond. Since neither of the basis sets used in this work includes such functions, it is necessary to compare the results of these authors with the predictions of $3-21 \mathrm{G}$ and $6-31 \mathrm{G}^{*}$ before proceeding to the larger molecules. A number

[^1]of properties of $\mathrm{H}_{2} \mathrm{SiO}$ are summarized in Table I. All levels of theory are in close agreement with their predictions of the SiH bond length and HSiO angle. The $3-21 \mathrm{G}$ and $6-31 \mathrm{G}^{*}$ predictions for the SiO bond length are not surprising since the latter basis set generally shortens bond lengths, while the addition of correlation effects lengthens them again. ${ }^{18}$ Based on previous calculations, ${ }^{6,16,18}$ one expects the actual SiO bond to be slightly longer than that predicted by CEPA and $0.03-0.04 \AA$ shorter than the $3-21 \mathrm{G}$ value. Note also that the MP3 energies are virtually identical for the $3-21 \mathrm{G}$ and $6-31 \mathrm{G}^{*}$ structures. This suggests that the energy comparisons given below will not be significantly altered by using 6-31G* geometries, As noted by Jacquet et al., ${ }^{17}$ the addition of diffuse functions tends to increase the polarization of the SiO bond. Thus the $6.31 \mathrm{G}^{*}$ charge on oxygen is -0.64 , whereas that predicted Jacquet et al. is -0.82 . Nevertheless, the dipole moments predicted by the two basis sets are quite similar (see Table I). To summarize, despite small differences in certain predicted properties, the use of 3-21G geometries for the larger molecules of interest does not appear to be unreasonable.
B. Geometries and Charge Densities. The 3-21G geometries and charge densities from 6-31G*//3-21G Mulliken population analyses for the six $\mathrm{H}_{4} \mathrm{SiCO}$ isomers are illustrated in Figure 1. Note that the SiO bond length in $\mathrm{CH}_{3} \mathrm{SiH}=\mathrm{O}$ is identical with that in $\mathrm{H}_{2} \mathrm{SiO}$, so one expects a shortening with more sophisticated wave functions. There is considerable variation in the calculated C -Si distances. The difference between the two substituted silaethylenes is expected based on previous calculations with electronegative substituents on this system. ${ }^{16}$ Similarly, the SiC bond length in the silylene structure (1) is the same as that in the fluoro analogue ${ }^{16}$ and the distance in the epoxide ring (4) is only slightly longer than that in silacyclopropane. ${ }^{19}$ If the $=0$ moiety is viewed as an electronegative substitutent, the CSi bond lengths in the

[^2] and J. A. Pople, J. Am. Chem. Soc., 101, 4085 (1979).
(19) M. S. Gordon, J. Am. Chem. Soc., 102, 7419 (1980).

Figure 1. Geometries (3-21G) and charge distributions (6-316*).
remaining isomers are also consistent since substitution at the silicon end shortens the bond, while substitution at carbon has the opposite effect. ${ }^{16}$

The charge distributions are self-explanatory; however, two points are worth noting. First, silicon d orbital populations are small for all six isomers, with the largest d population being 0.34 . This is consistent with the results of Jacquet, Kutzelnigg, and Staemmler on $\mathrm{H}_{2} \mathrm{SiO}^{17}$ Second, in silyl formaldehyde, there is a net shift in electron density of about 0.2 electrons from the silyl group to HCO. In contrast, the migration in structure 2 is toward the methyl group.
C. Energetics. The total and relative energies of the six $\mathrm{H}_{4} \mathrm{CSiO}$ isomers are listed in Tables II and III, respectively. At the SCF level, with either basis set, the most stable structure is found to be the silylene (2); however, the addition of polarization functions into the basis set and of correlation contributions into the wave function stabilize the silanone (1) relative to 2 . To the extent that these two effects are additive, $\mathbf{1}$ is predicted to be the most stable structure at the MP2 or MP3 level with a $6-31 \mathrm{G}^{*}$ basis set (last two columns of Table III).

Particularly interesting is that $\mathrm{CH}_{3} \mathrm{SiH}=\mathrm{O}$ is found to be more stable than $\mathrm{SiH}_{3} \mathrm{CH}=\mathrm{O}$ at all levels of calculation. In terms of bond energies, one expects the CH bonds in $\mathbf{1}$ to be stronger than the SiH bonds in 3, and this will stabilize the former molecule. By similar reasoning, the reverse will be true for the $\mathrm{X}-\mathrm{H}$ bonds adjacent to $\mathrm{X}=\mathrm{O}(\mathrm{X}=\mathrm{C}$ or Si$)$. The geometries in Figure 1 suggest that the $\mathrm{C}-\mathrm{Si}$ bond in $\mathbf{1}$ may be strengthened relative to
that in $\mathbf{3}$ due to greater delocalization from the $\mathrm{Si}=\mathrm{O}$ bond than from the $\mathrm{C}=\mathrm{O}$ bond. These considerations are incomplete unless one has a comparison of the $\mathrm{Si}=\mathrm{O}$ and $\mathrm{C}=\mathrm{O}$ bond strengths. Such a comparison may be obtained by considering the reaction

To the extent that the CH and SiH bonds are transferable (quite likely here), reaction 1 measures the relative strengths of the multiple bonds. By use of MP3/6-31G*//3-21G ${ }^{20}$ energies, reaction 3 is found to be endothermic by $24.9 \mathrm{kcal} / \mathrm{mol}$. If additivity of correlation and polarization effects is assumed for reaction 3, the ΔE is predicted to be $23.9 \mathrm{kcal} / \mathrm{mol}$. This is only $1.1 \mathrm{kcal} / \mathrm{mol}$ less than the ΔE from the actual calculation and provides some justification for the additivity approximation.

Recent estimates of the $\mathrm{C}=\mathrm{Si} \pi$ bond energy range from 35 to $55 \mathrm{kcal} / \mathrm{mol}^{21}$ with Davidson's value for 1,1 -dimethyl $1-$-silaethylene being $41 \mathrm{kcal} / \mathrm{mol}^{22}$ If the $\mathrm{C}=\mathrm{C} \pi$ bond energy is taken to be the difference between the carbon-carbon bond energies in ethane and ethylene, ${ }^{23}$ one finds the difference in π bond energies to be about $37 \mathrm{kcal} / \mathrm{mol}$ in favor of $\mathrm{C}=\mathrm{C}$. According to Walsh, ${ }^{24}$ the ethane and methylsilane single bond energies are the same, so that the $37 \mathrm{kcal} / \mathrm{mol}$ applies to the net $\mathrm{C}=\mathrm{C}$ vs. $\mathrm{C}=\mathrm{Si}$ difference as well. Combining this result with the calculated ΔE for reaction 3, we predict the $\mathrm{Si}=\mathrm{O}$ bond to be about $12 \mathrm{kcal} / \mathrm{mol}$ weaker than $\mathrm{C}=\mathrm{O}$. This value might be diminished somewhat if the $\mathrm{Si}=\mathrm{C} \pi$ bond energy were taken from $\mathrm{CH}_{2}=\mathrm{SiH}_{2}$ rather than the methylated species. The $\mathrm{C}-\mathrm{H}$ bonds are about 10 $\mathrm{kcal} / \mathrm{mol}$ stronger than $\mathrm{SiH} .{ }^{24}$ Even if the $\mathrm{C}-\mathrm{Si}$ bonds in $\mathbf{1}$ and 3 are the same, the net difference between the two isomers will be $\sim 8 \mathrm{kcal} / \mathrm{mol}$ in favor of 1 . If, as suggested by the relative bond lengths, the $\mathrm{Si}-\mathrm{C}$ bonds in $\mathbf{1}$ are stronger, this difference will increase. These speculations are at least in qualitative agreement with the actual isomerization energies given in Table III.

Conclusions

These calculations suggest that the thermodynamically most stable $\mathrm{H}_{4} \mathrm{CSiO}$ structure is methylsilanone $\left(\mathrm{CH}_{3} \mathrm{SiH}=\mathrm{O}\right)$. This is consistent with the recent findings of Barton and co-workers ${ }^{9}$ and is supported by qualitative bond energy estimates. These results also suggest that the metathesis reaction (2) appears to be thermodynamically feasible.

Acknowledgment. This research was supported by the donors of the Petroleum Research Fund, administered by the American Chemical Society (13025 -AC6). The computer time made available by the North Dakota State University Computer Center is gratefully acknowledged.

Registry No. 1, 88157-93-1; 2, 43435-60-5; 3, 88157-95-3; 4, 88157. 96-4; 5, 88157-94-2; 6, 88157-97-5; $\mathrm{H}_{2} \mathrm{SiO}, 22755-01-7 ; \mathrm{C}_{2} \mathrm{H}_{4}, 74-85-1$.

[^3]
[^0]: (1) L. E. Gusel'nikov and N. S. Nametkin, Chem. Rev., 79, 529 (1979).
 (2) R. T. Conlin and R. S. Gill. J. Am. Chem. Soc., 105, 618 (1983).
 (3) R. T. Conlin and R. T. Wood, J. Am. Chem. Soc., 103, 1943 (1981).
 (4) T. J. Barton, S. A. Burns, and G. T. Burns, Organometallics, 1, 210 (1982).
 (5) T. J. Barton and G. T. Burns, Organometalics 2, 1 (1983).
 (6) T. J. Barton, G. T. Burns, W. F. Goure, and W. D. Wulff, J. Am. Chem. Soc., 104, 1149 (1982).
 (7) T. J. Drahneck, J. Michl, and R. West, J. Am. Chem. Soc., 103, 1843 (1981).
 (8) H. F. Schaeffer, Acc. Chem. Res., 15, 283 (1982), and references therein.
 (9) G. Hussmann, W. D. Hulff, and T. J. Barton, J. Am. Chem. Soc., 105, 1263 (1983).

[^1]: (11) H. B. Schlegel, J. Comput. Chem., 3, 214 (1982).
 (12) J. S. Binkley, R. A. Whiteside, R. Krishman, R. Seeger, D. J. DeFrees, H. B. Schlegel, S. Topiol, L. R. Kahn, and J. A. Pople, Quantum Chemistry Program Exchange, Indiana University, 1980.
 (13) P. C. Hariharan and J. A. Pople, Theoret. Chim. Acta, 28, 213 (1973); M. S. Gordon, Chem. Phys. Lett., 76, 163 (1980); M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, and J. A. Pople, J. Chem. Phys., 77, 3654 (1977).
 (14) C. Moller and M. S. Plesset, Phys. Rev., 46, 618 (1934).
 (15) J. A. Pople, J. S. Binkley, and R. Seeger, Int. J. Quantum Chem. Symp., 10, 1 (1976).
 (16) M. S. Gordon, J. Am. Chem. Soc., 104, 4352 (1982); M. L. McKee and W. N. Lipscomb, ibid., 103, 4673 (1981); M. Dupuis, American Conference on Theoretical Chemistry, Boulder, CO, 1981; W. N. Lipscomb, Symposium on Vibrational Spectroscopy and Chemical Structure, Minneap olis, MN, May 1983.
 (17) R. Jacquet, W. Kutzelnigg, and V. Staemmler, Theoret. Chim. Acta, 54, 205 (1980).

[^2]: (18) D. J. DeFrees, B. A. Levi, S. K. Pollack, W. J. Hehre, J. S. Binkley,

[^3]: (20) This notation indicates an MP3 calculation using the $6-31 \mathrm{G}^{*}$ basis set at the 3-21G geometry.
 (21) P. R. Jones, 17th Organosilicon Symposium, Fargo, ND, June 1983.
 (22) I. M. T. Davidson, 17th Organosilicon Symposium, June 1983.
 (23) See, for example, P. W. Atkins, "Physical Chemistry", W. H. Freeman and Co., San Francisco, 1982.
 (24) R. Walsh, Acc. Chem. Res. 14, 246 (1981).
 (25) Note Added in Proof: Since acceptance of this paper, full MP3/6$31 \mathrm{G}^{*}$ calculations have been carried out on three of the isomers studied here: 1, 2, and 3. The results are slightly different from those obtained from the acidity assumption, since isomer $\mathbf{1}$ is now found to be $2.6 \mathrm{kcal} / \mathrm{mol}$ below 2 . Since this energy difference is less than that found for silylene vs. silaethylene at the same level of theory, it is still likely that isomer 2 will ultimately be the most stable. The energy gap between 2 and 3 increases by about 6 $\mathrm{kcal} / \mathrm{mol}$. Furthermore, it has very recently been found [T. Kudo and S. Nagase, J. Organomet. Chem., 253, C23 (1983)] that the silanone to hydroxysilylene isomerization barrier is about $60 \mathrm{kcal} / \mathrm{mol}$. This again argues for reaction 1 not readily occurring.

